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Abstract

In order to apply a Godunov method to steady and unsteady thermical flows, we first present a truncation error

analysis which proves that the Turkel preconditioned Roe splitting is applicable to flows modelized by the classical low

Mach number model, including thermics. The impact of the Turkel preconditioning on the first-order/second-order

pseudo-Newton algorithm (referred in the literature as the defect-correction iteration) is also analysed. Implicit methods

for steady flow resolution and for accurate unsteady time advancing are proposed and studied. Numerical illustrations

involve the natural convection in a square box and a flow around a perforated wall inspired by helicopter engine

applications.
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1. Introduction

Gas flows with regions where the Mach number is

small introduce some difficulties in numerical simula-

tions.

Several asymptotical models have been introduced in

order to address the specific difficulties of the low Mach

number; they are referred as the dilatable or low Mach

number model [13], the Boussinesq model and the in-

compressible model.

Adapted numerical methods have been derived for

these models: implicit pressure iteration, mesh stagger-

ing and mixed finite element . . . but using these methods

has some drawbacks:
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• adapted methods lead to adapted software kernels or

to much more complex software systems;

• asymptotic methods are less accurate at the limit of

their application domain (when the Mach number

is not so small) and not applicable to some mixed

conditions (low Mach in some part of the geometry,

larger Mach in another part).

It is therefore interesting to use a full com-

pressible model, as far as it exhibits enough good

features in term of robustness, cost efficiency and

accuracy.

However, the application of a numerical method

devoted to transonic flow computations to a low Mach

flow may lead to several problems:

(i) generally, no adimensionalization is introduced for

the low Mach number (‘‘Euler number’’), large num-

bers are then handled, and round off errors can be-

come dominant;
erved.
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i(ii) explicit methods can be used only with extremely

small time steps and the systems to solve for steady

solutions or long time unsteady ones are stiff;

(iii) with some numerical schemes, the approximation

errors become very large for a given mesh.

Difficulty (i) is generally cured by adimensionalisa-

tion or the use of a decomposition between mean value

and fluctuation.

Difficulty (ii) has been addressed by block-diagonal

preconditioning. This preconditioning has been derived

early by Turkel [16,17] who got inspired from the arti-

ficial compressibility method. Later, many authors (see

for example [17,18]) have proposed smarter and smarter

preconditioners for the fast pseudo-unsteady resolution

of steady low Mach flows.

In the case of a Godunov-type scheme, it was ob-

served that not only the convergence was accelerated,

but also the solution was of good quality, in contrast to

the non-preconditioned case. This gives also an answer

to the third difficulty (iii).

We can also mention the work of Wesseling et al. [22]

in which methods developped for the incompressible case

are modified (leading to staggered schemes) for computing

compressible flows with low Mach number regions.

Applications to quasi-incompressible flows were

most frequently addressed, although applications with

thermics were also presented [12,15].

The analysis of the original and preconditioned

schemes have been also proposed for the convergence to

incompressible. In particular, Guillard and Viozat [10]

have put in evidence that non-preconditioned Godunov

methods produced pressure fluctuation of a wrong order

of magnitude with respect to the Mach number.

In this paper, we revisit the adaptation of a family of

Godunov methods to low Mach flow calculations in-

cluding thermics. More precisely, we consider a second-

order MUSCL extension for Roe�s upwind scheme, and

the time advancing is implicit with a linearised precon-

ditioner relying on first-order upwinding.

Several important questions are either not solved in

the literature or deserve more accurate statements. They

involve:
• the analysis of asymptotical accuracy for a large set

of asymptotic flows including thermics,

• the convergence to steady-state of a pseudo-Newton

iteration, assuming that the linear system is properly

solved,

• the building of accurate implicit time advancing

scheme.

1.1. Asymptotical accuracy

The basic mechanism of Godunov methods leads to

add to each characteristic wave of an hyperbolic process

a viscosity proportional to its velocity. But since the time

is advanced with conservative variables, which are

combinations of characteristic variables, this introduces

some unfavourable cross influence between the stabili-

sation terms. As a result, for low Mach numbers,

Godunov methods are too dissipative for the velocity,

not enough for pressure, and in practice not applicable

to Mach numbers less than one-tenth. Many authors

have analysed the evolution of the truncation error when

solutions are closer and closer to incompressible flows.

The actual non-convergence of the discrete solution to

the incompressible one has been established by Guillard

and Viozat [10]. Conversely, a family of ‘‘precondi-

tioned’’ flux splittings has been derived [18] and analysed

as consistent approximations for incompressible flows.

From our opinion, many authors have also intuited that

a larger family of low Mach number asymptotics including

thermics is affordable with the new schemes [15]. In this

paper, we propose a reliable formalisation of this ex-

tended property.

1.2. Convergence to steady-state

The origin of the low Mach number precondition-

ing idea is related to the difficult issue for computing

steady-states with wave speeds of very different size. A

pseudo-unsteady iteration, inspired from the artificial

compressibility method, and involving a pressure pre-

conditioner was proposed by Turkel [16]. This work is at

the origin of many pseudo-unsteady explicit algorithms

for the computation of steady solutions.
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Now, the Godunov method is very frequently com-

bined with an implicit iteration using a ‘‘first-order

Jacobian’’. Indeed, second-order Godunov approxima-

tions result in non-compact finite-difference molecules

(let us say, with five diagonals in 1D), while the first-

order Jacobian is compact (three diagonals in 1D). The

preconditioning of a second-order accurate approxima-

tion by a first-order one has been studied and referred in

the literature as the first-order second-order defect-cor-

rection iteration. A beautiful state of the art is proposed

in [6]. In the case of transonic flows, the authors of

that paper show that this iteration has rather good

convergence properties. In the case of low Mach number

flow, however, the convergence deteriorates dramati-

cally. In this work, we give some arguments explaining

this feature, and we show that the introduction of

the low Mach preconditioner in the upwind stabiliza-

tion term of both approximation and Jacobian cures this

problem.

1.3. Time accuracy

The accuracy of a numerical approximation is above

all determined by the amount of information devoted to

the description of a given phenomenon.

In advection phenomena, not only the advected

quantities have to be well described by the spatial mesh,

but also the time step size has to be small accordingly;

the limitation on the time step size for accuracy can

be expressed by the Courant–Friedrichs–Lewy (CFL)

condition (which is also a stability condition for explicit

time advancing schemes). If we apply an implicit time

advancing scheme, using larger time step will result in

either Gibbs oscillations, or, if the numerical scheme

has enough dissipation, in high dissipation errors. Such

dissipative schemes are often first-order accurate ones.

Moreover, even with high order accurate schemes, the

practical accuracy may not be better that first-order

when details are not captured. By ‘‘practical accuracy

order’’, we mean the apparent order of accuracy for a

given size of time step, by opposition to the formal

order of accuracy, that is an asymptotic one i.e. ap-

plying only for ‘‘small enough’’, may be very small, time

step. In the Navier–Stokes model for compressible flu-

ids, both entropy waves and acoustics are advected.

This seems to indicate that, for reasonable accuracy, a

CFL condition relying on both fluid velocity and sound

speed should be imposed. Conversely, implicit time

advancing methods and large time steps would be ap-

plied only with an important dissipation for damping

the too fast waves, that is with first-order practical ac-

curacy. This remark is in fact not true for all kind of

flows. Indeed, for a large class of compressible flows,

the evolution of variables, the time derivative of which

are computed by divided differences, is much slower

than the travel of a high frequency wave at sound speed.
Therefore, the underlying Taylor formula is accurate

and high-order practical accuracy is obtained with large

time steps. As examples of such fluid problems, we refer

to flows with slow variation of geometry, such as in

fluid-structure flutter analysis, and piston engines cal-

culations; the domains of combustion and maybe of

aeroacoustic coupling involve also many contexts of this

type. In case of transonic flows, time accuracy is ob-

served when the velocity of shocks are small enough. A

special category is the case of low Mach and very low

Mach flows. In the case where asymptotic models are

very accurate, then implicit schemes (that are manda-

tory for these models) with high-order accuracy can be

applied with benefit (large time steps, good accuracy)

and result in higher efficiency. In the case where a

complete compressible Navier–Stokes model is applied,

the question of the efficiency of a strategy relying on

large time steps and high-order accurate time advancing

is open.

One purpose of this paper is to examine the use of a

third-order accurate implicit scheme in a complete

compressible Navier–Stokes model with some emphases

on low Mach flows.

Third-order time accuracy is rarely implemented in

complex CFD codes. Yet, third-order accuracy is ac-

companied with small phase errors for advection phe-

nomena; then spurious oscillations are also reduced as

compared with second-order accuracy.

Since direct methods are not applicable to complex

CFD systems, iteration is the rule, and so we may

consider nonlinear solvers at each time step. Then the

two-stage scheme of Norsett [11] seems to be a conve-

nient choice and we present its combination with the

first-order Jacobian preconditioning.
1.4. Applications

Our study will cover a sample of steady applications

involving some classical low Mach number flows and

a non-classical one related to the thermics in a turbo-

engine. An academic unsteady natural convection

problem is also investigated from the point of view of

acoustics progressive damping.
1.5. Plan

After a first section recalling some features of low

Mach number asymptotics, we analyse the influence of

the Turkel preconditioning in the Roe flux splitting in

the context of these asymptotics. Then we analyse the

efficiency of the defect-correction method with and

without the preconditioning and give some steady-state

applications. Finally the third-order accurate implicit

time advancing scheme is described and applied to a

complex transient problem.
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The remaining part of this paper is organized as

follows:

2. Low Mach asymptotics;

3. Low Mach Godunov-type method;

4. Analysis of the defect-correction iteration;

5. Accurate implicit time advancing;

6. Application to steady low Mach flows;

7. Application to a transient convection problem;

8. Concluding remarks.
2. Low Mach asymptotics

There is some consensus about the better efficiency of

asymptotic models for a collection of special contexts, as

compared to the complete compressible model. This is

particularly true for natural convection flows, computed

well, up to now, with the low Mach number asymptotic

model, and for many low speed flows computed accu-

rately with the incompressible model.

We want, however, to emphasize that an adequate

numerical treatment of the full compressible model

allows good answers not only for the existing asymptotic

contexts, but also for some other physical contexts that

are near the asymptotic ones and are not accurately

handled by the asymptotic approach. This section recalls

some details of the low Mach number model in a format

making the sequel more easy to read.

2.1. Basic asymptotics

We start considering the usual compressible model in

conservation form, with gravity terms

oq
ot

þr � ðquÞ ¼ 0; ð0:aÞ

oqu
ot

þr � ðqu	 uÞ ¼ �rp þr � s þ qgeg; ð0:bÞ

oq e þ 1
2
kuk2

� �
ot

þr � qu e

��
þ 1

2
kuk2

��
¼ �r � ðpuÞ þ r � ðs : uÞ
þ r � ðkrT Þ þ qgeg � u ð0:cÞ

with

p ¼ RqT ; ð0:dÞ

e ¼ CvT ; ð0:eÞ

s ¼ l ru
�

þ ðruÞT � 2

3
ðr � uÞI

�
: ð0:fÞ

where q is the density, ui the components of the velocity

vector u, gi the components of the gravity acceleration

geg and eg is the unit vector giving the direction of

gravity forces.
Then the equation of the total energy becomes:

qCp
oT
ot

�
þ u � rT

�
� oP

ot

�
þ u � rP

�
� s : ru�r � ðkrT Þ ¼ 0 ð1Þ

using the momentum equation multiplied by the veloc-

ity. In the standard low Mach number flow analysis [13],

the non-dimensionalisation allowing to keep a set of

variables all of the order of unity introduces necessarily

a new factor for the pressure term in moment equations.

This factor often called the Euler number is the inverse

of the square of a reference Mach number.

In our analysis, we conserve without any adimen-

sional factor the Euler part of the Navier–Stokes equa-

tions i.e., we take the Strouhal, Euler and Eckert

numbers equal to one and also

T� ¼ e�=Cv ð2Þ

as in most Navier–Stokes numerical solvers.

Then, either the velocity tends to zero, or the energy

tends to infinity when the Mach will be made smaller

and smaller. Our asymptotic ansatz on ‘‘non-dimen-

sionalised’’ variables relies on the last option

~qq ¼ ~qq0 þM�~qq1 þM2
� ~qq2 þ � � � ;

~uu ¼ ~uu0 þM�~uu1 þM2
�~uu2 þ � � � ;

~pp ¼ ð1=M2
� Þ~pp0 þ ð1=M�Þ~pp1 þ ~pp2 þ � � � ;

~TT ¼ ð1=M2
� Þ ~TT0 þ ð1=M�Þ ~TT1 þ ~TT2 þ � � � :

ð3Þ

We assume that Reynolds and Froude numbers are

much larger than the Mach number

M2
�

Re
� 1;

M2
�

Fr
� 1:

We recall that in the asymptotic model the three first

unknowns converge to bounded values while it is the

quotient of the fourth one by M2
� that converges to a

bounded value.

It results that we can pass to the limit on the conti-

nuity equations with only bounded quantities and then

the limit differential equation is unchanged.

The largest terms in the momentum equations give

successively ~rr~pp0 ¼ 0 and ~rr~pp1 ¼ 0. Assuming also that

boundary conditions allow a uniform static pressure for

the solution, we deduce that ~pp0 and ~pp1 are uniform over

the (connex) geometrical domain.

The bounded terms in the momentum equations

couple the bounded density and momentum to the gra-

dient of the zero-order term ~pp2 in the pressure asymp-

totic expansion.

For the sake of clarity, let us multiply the energy

equation (1) by a M2
� factor before passing to the limit.

The kinetic energy is two orders smaller and can be

discarded from the energy equation, which then reduces

essentially to the heat equation. The four limit equations
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give us the so-called low Mach or dilatable asymptotical

model

o~qq0

o~tt
þ ~rr � ð~qq0~uu0Þ ¼ 0; ð4:aÞ

o~qq0~uu0
o~tt

þ ~rr � ð~qq0~uu0 	 ~uu0Þ ¼ � ~rr~pp2 þ
1

Re
~rr � ~ss0 þ

1

Fr
~qq0eg;

ð4:bÞ

~qq0

o ~TT0
o~tt

 
þ ~uu0 � ~rr ~TT0

!
� 1

c
d~pp0
d~tt

� 1

Pe
~rr2 ~TT0 ¼ 0; ð4:cÞ

~pp0 ¼ ðc � 1Þ~qq0
~TT0; ð4:dÞ

where

dð�Þ
d~tt

¼ oð�Þ
o~tt

þ ~uu0 � ~rrð�Þ: ð5Þ

This model is very useful in several different fields of

applications, and has been in particular much used for

low Mach combustion flows.

An extension to real gas is possible. Let us assume

that the state law is written

dp ¼ ndq þ jdqe ð6Þ

with

n ¼ op
oq

� �
qe

; j ¼ op
oqe

� �
q

:

Then Eq. (1) becomes

ðqn þ jðqe þ pÞÞ
qn

dðqeÞ
dt

� ðqe þ pÞ
qn

dp
dt

� s

: ru�r � ðkrT Þ ¼ 0: ð7Þ

The equations are non-dimensionalised as in the case of

a perfect gas except that now we take T� ¼ e�, and also

n� ¼ e�, j� ¼ 1. In addition to the asymptotic develop-

ment (cf. (3)), we take

~qq~ee ¼ 1

~MM2
�
ð~qq~eeÞ0 þ

1

~MM�
ð~qq~eeÞ1 þ ð~qq~eeÞ2 þ � � � ;

~nn ¼ 1

~MM2
�

~nn0 þ
1

~MM�

~nn1 þ ~nn2 þ � � � ;

~jj ¼ ~jj0 þ ~MM�~jj1 þ ~MM2
� ~jj2 þ � � � :

ð8Þ

Then we obtain a dilatable-like model composed of

Eqs. (4.a) and (4.b) together with

ð~qq0
~nn0 þ ~jj0ðð~qq~eeÞ0 þ ~pp0ÞÞ

~qq0
~nn0

dð~qq~eeÞ0
d~tt

� ðð~qq~eeÞ0 þ ~pp0Þ
~qq0
~nn0

d~pp0
d~tt

� 1

Re
~ss0 : ~rr~uu0 �

1

Pe
~rr � ð~kk ~rr ~TT0Þ ¼ 0; ð9Þ

where

d~pp0 ¼ ~nn0d~qq0 þ ~jj0dð~qq~eeÞ0: ð10Þ
This model is also applicable to certain types of two-

phase flows. We refer to [2,21] for low Mach number

diphasic flows.

Let us recall that for small temperature amplitudes, a

constant density approximation can be applied in the

continuity equation and the model (9) can be replaced

by the Boussinesq model, which, in turn, under an iso-

thermal assumption would reduce to the incompressible

model.

2.2. Taking into account a pressure gradient

In an important class of applications, we do not wish

to assume that boundary conditions allow a uniform

static pressure. This is the case when gravity terms are

accounted for, so that the pressure involves an hydro-

static component. We shall need in the sequel to con-

sider the following conditions:

In a part of the boundary, the static pressure is

~pp ¼ ~pp0 � kM 2
� ~pp0 ð11Þ

and in the other part:

~pp ¼ ~pp0 þ kM 2
� ~pp0 ð12Þ

where k does not depend on M�.

Then the asymptotical analysis gives again a ‘‘dilat-

able’’ limit, and (11) and (12) give boundary conditions

for the second-order pressure fluctuation ~pp4, respec-

tively:

~pp4 ¼ �k~pp0 or þ k~pp0 ð13Þ

to be combined with Eq. (9). We shall give an example of

such a flow in Section 6.2.
3. Low Mach Godunov-type method

3.1. Central differencing

Let us write a vertex-centered central differenced fi-

nite volume scheme for the Euler equations applied to

an unstructured mesh as follows:

Whðc;W Þj ¼
X
k2V ðjÞ

UcentralðWj;Wk ;~ggjkÞ þ Bhðc;W Þj; ð14Þ

where V ðjÞ is the set of vertices that are neighbors of j,
~ggjk is the integral on interface between j and k of the

normal vector. Symbol Bhðc;W Þj holds for boundary

fluxes. The centered integration for elementary flux U is

written as follows:

UcentralðWj;Wk ;~ggjkÞ ¼ 0:5ðFj þ FkÞ �~ggjk ; ð15Þ

where Fj ¼ F ðWjÞ are the Euler fluxes computed at Wj.

This is equivalent in introducing the following discrete

space operator rh:
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$hðf Þj ¼
X
k2V ðjÞ

ðfj þ fkÞ=2~ggjk =areaðjÞ; ð16Þ

where areaðjÞ is the cell area.

Let us assume that the above asymptotic expansion

applies to a discrete solution family. Due to the fact that

rh depends neither on M� nor the dependent flow vari-

ables W , this operator commutes with the asymptotic

expansion. For example, the Euler fluxes satisfy the

following estimate:

oF
oW

� �
1




0 Oð1Þ 0 0
Oð1Þ Oð1Þ Oð1Þ Oð1Þ
Oð1Þ Oð1Þ Oð1Þ 0

O 1
M2

�

� �
O 1

M2
�

� �
Oð1Þ Oð1Þ

2
6664

3
7775: ð17Þ

Then it remains to multiply the last equation by M2
� for

obtaining the discrete low Mach limiting equations,

similarly to the continuous case.

Unfortunately, we cannot make the discretization

parameter h tend to the limit, since the proposed central

differenced approximation is not stable (and not con-

vergent in practice). This difficulty is often solved by

applying Godunov differencing.

3.2. Godunov differencing

Godunov-type methods rely on discontinuous rep-

resentations of the unknown and computation of fluxes

at discontinuities in function of both ‘‘left’’ and ‘‘right’’

values by applying an approximate or an exact Riemann

solver. This process introduces numerical viscosity terms

that are very useful for stabilizing transonic flows.

Let us write a vertex-centered first-order Godunov

scheme for the Euler equations applied to an unstruc-

tured mesh as follows:

Whðc;W Þj ¼
X
k2V ðjÞ

UðWj;Wk ;~ggjkÞ þ Bhðc;W Þj; ð18Þ

where V ðjÞ is the set of vertices that are neighbors of j,
~ggjk is the integral on interface between j and k of the

normal vector. Symbol Bhðc;W Þj holds for boundary

fluxes. The upwinding in elementary flux U is the Roe

flux splitting. In the case of the standard Roe splitting,

we have

UðWj;Wk ;~ggjkÞ ¼ 0:5ðFj þ FkÞ �~ggjk þ 0:5jAjðWj � WkÞ;
ð19Þ

where Fj ¼ F ðWjÞ is the Euler flux computed at Wj, and

jAj is the absolute value of the Jacobian flux along ~ggjk

A ¼ oF
oW

� �
1

ðgjkÞ1 þ
oF
oW

� �
2

ðgjkÞ2

A ¼ TKT�1; K diagonal;

jAj ¼ T jKjT�1:

ð20Þ
These matrices are computed at an intermediate value

W jk of W [23].

The introduction of Turkel�s preconditioner leads to
the following preconditioned flux discretisation

UðWj;Wk ;~ggjkÞ ¼ 0:5ðFj þ FkÞ:~ggjk

þ 0:5P ðM�Þ�1jP ðM�ÞAjðWj � WkÞ: ð21Þ

The preconditioner P ðM�Þ is a 4� 4 matrix in 2D. The

option that we consider was proposed by Turkel in [16].

It has been analysed for example in [10].

In term of the ‘‘primitive’’ variables U ¼ ½p; u;
v; lnðp=ðqcÞÞ�, this preconditioner writes:

PU ðbÞ ¼
b2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0
BB@

1
CCA:

In our study, the parameter b will be systematically

chosen equal to the reference Mach number M�.

For the conservative variables W ¼ ½q; qu; qv; qe� the
corresponding form is

P ðM�Þ ¼ oW
oU

PU ðM�Þ oU
oW

:

By tedious calculations we can analyse the behavior of

the Roe scheme in the case of the convergence to a low

Mach limit. The discretization now does not commute

with the asymptotic expansion and a step by step cal-

culation is necessary.

From this analysis it turns that the standard Roe

viscosity (corresponding to b ¼ 1) shows a spurious

asymptotic behaviour. Indeed, whenMach number tends

to zero, some terms become much larger than the con-

sistent central-differenced fluxes. The fact that some

other ones are too small can also produce unfavourable

oscillations (only the analysis of fluxes in x direction––

indicated by subscript 1––are presented here).

oF
oW

� �
1

����
���� 


Oð1Þ OðM�Þ OðM�Þ OðM�Þ
O 1

M�

� �
O 1

M�

� �
OðM�Þ OðM�Þ

OðM�Þ OðM�Þ Oð1Þ OðM�Þ
O 1

M�

� �
O 1

M�

� �
O 1

M�

� �
O 1

M�

� �

2
66664

3
77775;

ð22Þ

conversely, the preconditioned viscous term (b ¼ M�)

shows a more regular behavior:

P ðM�Þ�1 P ðM�Þ
oF
oW

� �
1

����
����
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that is coherent with the behavior of the Euler fluxes

(17).

Similar behaviors are obtained for ðoF =oW Þ2 so that

similar results hold for the whole stabilisation term

P ðM�Þ�1jPðM�ÞAj. Multiplying the energy equation by

M2
� would complete the obtention of the low Mach

discrete system.

As a consequence, the analysis can be transposed to

the discrete context when the Turkel preconditioner is

introduced in the stabilization term. This analysis shows

the following property:

Property 1. The usual Roe scheme, although a consistent
scheme, presents a defavorable error behavior for low
Mach flow. Conversely this kind of flow, including ther-
mics, can be computed with the Turkel preconditioned
version of Roe scheme with a Mach independent accuracy.

Since only the spatial stabilization term is modified

by the preconditioner and not the time derivative, we

have also the following property:

Property 2. Our analysis applies also to the unsteady
case.

Remark. In practice, the Turkel preconditioner has to be

also introduced in any upwind boundary condition.

Before illustrating the impact of this Property on low

Mach flows, we shall examine a second crucial issue, the

convergence of a popular Newton-like iteration.
4. Analysis of the defect-correction iteration

We are interested in some implicit time stepping

methods using the Roe scheme. These methods, referred

to as Implicit or Linear defect-correction (LDC) meth-

ods, combine a second-order accurate spatial approxi-

mation with a first-order linear spatial operator and

have been analysed in detail in [6].

The LDC method can be written as

M
Dt

�
þ A1ðW nÞ

�
ðW nþ1 � W nÞ ¼ �W2ðW nÞ; ð24Þ

where M is the mass matrix, Dt is the time step. Symbol

A1 holds for an approximation of the Jacobian of the

first-order accurate numerical flux (18). Symbol W2

holds for the second-order accurate (in space) numerical

flux. We give now some informations about this ap-

proximation. It is an edge-based approximation, so that

for each vertex j, the fluxes are computed with any

neighboring vertex k (k 2 V ðjÞ). The novelty with respect

to the first-order spatial accurate discretization is that

the flow variables evaluations Wjk and Wkj used in the
Roe approximate Riemann solver are derived from an

higher-order interpolation

Whðc;W Þj ¼
X
k2V ðjÞ

UðWjk ;Wkj;~ggjkÞ þ Bhðc;W Þj; ð25Þ

where the Wjk and Wkj are extrapolated according to the

MUSCL method of Van Leer [19] extended to triangles

as in [7]. In short

Wjk ¼ Wj þ
1� j
2

ðWk � WjÞ þ
j
2
ðrW Þj � jk

!
; ð26Þ

where ðrW Þj is a mean of the gradients of W on trian-

gles around vertex j and j is an upwind bias coefficient

generally taken to 1=2.
We restrict now our analysis to scalar advection, and

in order to modelize the asymptotic behaviors (22) and

(23), we consider an upwind viscosity term weighted

with a parameter f:

UðQj;QkÞ ¼~aa �~ggjk
Qj þ Qk

2
þ 1

2
f j~aa �~ggjk j ðQj � QkÞ;

ð27Þ

where~aa is the advective velocity. According to (22) and

(23) the Roe scheme is modelized by (27) with

f ¼ Oð1=M�Þ and with f ¼ OðM�Þ, and the precondi-

tioned scheme is modelized by (27) with f ¼ Oð1Þ. The
second-order accurate part is parameterized accordingly

UðQjk;QkjÞ ¼~aa:~ggjk
Qjk þ Qkj

2
þ 1

2
fj~aa:~ggjk j ðQjk � QkjÞ;

ð28Þ

A 1D Fourier analysis applied only to LDC iteration

with model (27) is sufficient for detecting the problems

arising from an upwinding weight f too different from

unity. Indeed, we can predict, see Fig. 1, the amplifica-

tion factor of the LDC as a function of (a) the upwind

bias coefficient j and (b) the upwinding weight f. It was
observed by Desideri and Hemker [6] that the best value

of j was 0.5. Fig. 1 gives an evidence of this. It also

shows that the best value of f is one, and that the con-

vergence fastly degrades when f deviates from one. It is

then clear that our model shows the following behav-

iour:

Property 3. In the context of the proposed 1D model, the
implicit defect-correction schemes built with (27) have a
convergence ratio which is mesh independent and which
depends only on f. It degrades to 1 as f increases infinitely
and can be larger than one when f is small.

Our model then predicts that the convergence of the

LDC scheme with low Mach number preconditioner in

both second-order approximation scheme and first-or-

der Jacobian would be independent of the Mach number

whilst that of LDC with the Roe scheme (again for both
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second-order approximation scheme and first-order

Jacobian) would be dependent of it. More details can

be found in [20].

5. Accurate implicit time advancing scheme

Since the preconditioner is introduced only in the

upwind viscosity term, the scheme is not only spatially

consistent, but also can be advanced in time with time

accuracy.

5.1. Linearised scheme with first-order accuracy in space

The hybrid order one/order two scheme used in

Section 4 for calculating steady states can be extended to

a first-order consistent time advancing

ðM þ DtAn
1ÞðW nþ1 � W nÞ ¼ �W2ðW nÞ; ð29Þ

where the linear operator An
1 is the sum of a genuine

Jacobian for the viscous fluxes and a first-order (in

space) approximate Jacobian for the Euler fluxes

An
1 ¼

oWinviscid
1

oW

�
þ oWviscous

2

oW

�
ðW nÞ:

At each iteration, the linear system is actually solved by a

multigrid scheme described in [8] or by an LU factor-

ization method. For unsteady laminar flows, the accu-

racy of the above scheme turns to be of OðDt;DtDx;Dx2Þ,
which in practice is not much accurate and limits the size

of time steps usuable for a given accuracy.

5.2. An implicit Runge–Kutta scheme

Second-order accuracy in time is easily obtained with

the extension BDF2 relying on the second-order differ-

ence in time:
oW
ot

¼ k1W nþ1 þ k0W n þ k�1W n�1 þOðDt2Þ ð30Þ

with k1 ¼ 3=ð2DtÞ, k0 ¼ �2=Dt and k�1 ¼ 1=ð2DtÞ.
This scheme will produce an unconditionally stable

scheme for both advection and diffusion. In [14] is pre-

sented a combination of Eq. (30) with defect-correction.

On the contrary, BDF3 is unconditionally stable only

for diffusion operators.

To build a higher-order accurate scheme, we have

chosen a nonlinear scheme with two implicit systems to

solve at each iteration, the singly diagonal two-stage

implicit Runge–Kutta (SDIRK) scheme of Norsett [11]:

dW1 ¼ �WðW n þ Dtða11dW1 þ a12dW2ÞÞ;
dW2 ¼ �WðW n þ Dtða21dW1 þ a22dW2ÞÞ;
W nþ1 ¼ W n þ Dtðb1dW1 þ b2dW2Þ

ð31Þ

with

b1 ¼ 1=2; b2 ¼ 1=2;

a11 ¼
3þ

ffiffiffi
3

p

6
; a21 ¼ 1� 2a11; a22 ¼ a11; a12 ¼ 0:

ð32Þ

It is known that the above scheme is third-order accu-

rate in time, unconditionally stable for any complex gain

coefficient of nonnegative real part (A� ðp
2
Þ stability),

which ensures stability for both advection and diffusion

processes.

At each stage of the SDIRK scheme, a nonlinear

system has to be solved. We solve it by two nested loops.

First a Newton-like or defect-correction iteration is

preconditioned by the above first-order (in space) sim-

plified linearised system, we perform a number a of de-

fect-correction iterations. Second, the linearised system

is solved by a multi-grid cycling or a direct factorization

method.
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6. Application to steady low mach flows

The following computations are presented in order to

illustrate and hopefully confirm the properties arising

from the theoretical part of this paper. We start with

some classical incompressible and low Mach flows, then

we present a case that should not be computed with an

asymptotical model. In any case, it is either necessary or

useful to identify the reference Mach number for un-

derstanding the asymptotic behaviour of the solution

and use this information in the numerical model.

6.1. Spatial accuracy evaluation (1): lid driven cavity

It is not useless to illustrate that the ‘‘preconditioned-

compressible’’ technology presented in this study can

compete from an accuracy standpoint (i.e. with a com-

parable number of degrees of freedom) with some clas-

sical technology available for incompressible flows. We

consider the lid-driven cavity for an incompressible flow,

Reynolds number of which is 1000. A well-known ref-

erence computation has been performed by Ghia et al.

[9] with a central-differenced second-order approxima-

tion and a fine cartesian mesh with 129� 129 nodes. But

the interest of this test case is that a very accurate so-

lution is available. Indeed, Botella and Peyret [1] have

applied a Chebyshev spectral approximation with sin-

gular basis functions for the corners; their computation

allows an accuracy of 10�5–10�6.

In our compressible calculation, we need to identify

an evolutive process with an initial condition. This al-

lows to define a reference Mach number M� as the ratio

of the lid velocity to the uniform sound velocity in the

initial stagnating atmosphere in the box:

M� ¼
kulidmaxk
ainit

: ð33Þ

When M� is large, the compressible solution can deviate

from the incompressible one. We can manage to obtain

such a model error not larger than 10�6. Indeed, the

deviation between incompressible and compressible

varies as the square of the Mach number; it is enough

in our case to specify a Mach number of 10�3. The

grids that are used are chosen cartesian, for the sake

of comparison, with 41� 41, 81� 81 and 161� 161

nodes.

In Fig. 2 we present some horizontal cuts of the

vertical velocity. The observation of these curves seems

to indicate a reduction factor of the deviation between

two solutions better than four, that is a numerical con-

vergence order better than two.

Of course, for the same number of nodes, the best

incompressible scheme is likely one order of magnitude

faster than the proposed method; but if both calcula-

tions are affordable, the user can be interested in ap-

plying a unique method for a very large family of flows.
6.2. Spatial accuracy evaluation (2): natural convection

We turn now to a flow with heat transfer. Real life

problems of this type are generally not steady. We start

with a steady case and a first remark on the conditions

of application of the proposed method, then we will

come back to this context in the last section for the

unsteady variant. Natural convection problems have

been studied during decades with the Boussinesq model.

This model not only assumes an incompressible flow but

also a small variation of temperature. A very classical

test case for steady natural convection was defined by De

Vahl Davis in [3]. With the compressible approach, we

have to handle an extra parameter, a Mach number that

is representative of the flow. We define it as follows:

ðM�Þ2 ¼
DTgl

cRðTmeanÞ2
; ð34Þ

where g is the gravity acceleration, l the size of the box,
R the usual perfect gas constant, c the usual ratio of

calorific constants. DT is the difference of temperature

between the cold and the warm walls, and Tmean is the

arithmetic mean between these two temperatures.

It is possible to compute accurately this case with the

method described in this study. However, a difficulty

that we have encountered is the following one: in the

compressible case the physical conditions of the problem

involve total mass and energy. This should be ade-

quately prescribed in the initial conditions and strictly

preserved during the (pseudo-)unsteady calculation.

Transient conservation is in fact satisfied if the linear

systems with first-order Jacobian in the time-advancing
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scheme are perfectly solved (in contrast to a rough it-

erative convergence). For very low Mach number, only

the application of a direct solver could produce reliable

results, i.e. results of best accuracy, which does not de-

pendent of the transient history. We present in Fig. 3 a

few results in order to illustrate that this is easily cal-

culated with a coarse mesh (cartesian, 41� 41). The

Nusselt number is captured with less than 5% deviation

compared to the Vahl Davis [3] results. This short ex-

ample confirms the accuracy statement of Property 1 in

the case where thermics are computed. We shall return

to this physical context in Section 7.1.

6.3. Defect-correction convergence: airfoil flow

For illustrating the iterative properties of the defect-

correction iteration, we consider the very simple steady

Euler flow around a NACA0012 airfoil (with zero angle

of attack; the definition of this airfoil can be found for

example in [5]). We consider three different values of the

farfield Mach number, M1 ¼ 0:1, 0.01, 0.001 that plays
(a)

(c)

Fig. 3. Natural convection square box (Pr ¼ 0:71, c ¼ 1:4, �� ¼ DT
2Tmea

perature contours (from 263.15 to 285.15 K, DT ¼ 2 K); (b) density co

number contours (from 0 to 1.36365� 10�5, 10 intervals); (d) streaml
the role of the reference Mach number M�. The above

implicit scheme is applied with large time steps, which

are taken proportional to the inverse of the farfield

Mach number. In the case of the Roe scheme, see Fig.

4(top), the convergence considerably degrades for lower

Mach numbers, while the same LDC iteration for the

scheme with ‘‘preconditioned’’ upwind vicosity, see Fig.

4(bottom), shows a convergence that is essentially Mach

number independent, in accordance with Property 3 in

Section 4.

6.4. An example not solved by asymptotic models

The fact that the dilatable model is often called ‘‘the

low Mach model’’ can be interpreted as the tendancy of

engineers to estimate most low Mach flows as dilatable

ones at the asymptotic limit. The proposed example

shows a counter example.

Turbo-engines combustion chambers are limited by

metallic walls with a large number of small perforations.

These perforations allow an external colder flow to get
(b)

(d)

n
’ 0:07322, M� ¼ 10�4, Rayleigh number Ra ¼ 103): (a) tem-

ntours (from 1.11874 to 1.20377 kg/m3, 10 intervals); (c) Mach

ines.
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stepping (inner linear relaxation is converged) for an implicit

defect-correction method with the usual Roe scheme, that is

without a preconditioner in the viscous term (top) and with a
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Fig. 5. Low Mach flow near a perforated wall: contours of the

module of velocity, from 0 to 3 m/s. External flow is on upper

side, with a smaller mean velocity, and a higher pressure; both

flows go from left to right. In this first computation, mean

temperatures of the two flows are identical.

E. Schall et al. / International Journal of Heat and Mass Transfer 46 (2003) 3909–3926 3919
in and help a colder boundary layer to protect the wall

against too high heat. The way only one hole interfers

with internal and external flows is difficult to compute.

Indeed the flow is a low Mach flow (Mach is about a

few thousandths), but asymptotic models should not be

used since the size of fluctuations of pressure, density

and temperature are forced by the differences between

external and internal flows.

Another important difficulty that we shall not address

here is the fact that the size of the hole, smaller than the

turbulent boundary layer thickness, induces important

local laminar behaviors. In the present study, we restrict

to a laminar model. We shall just give with Fig. 5 a rough

idea of the flow: the upper (turbulent) boundary layer

disappears at hole location due to suction, the lower

boundary layer is not much affected. A mesh of 16,000

nodes was necessary for this computation.

The boundary conditions specify some uniform

pressures at farfield, with two different values at upper
and lower parts of the geometry. The velocities are on

each part set equal to (2.74, 0) at farfield.

Furthermore, the wall condition is an isothermal one,

with the same prescribed temperature for both sides of

the wall.

If we neglect the heat fluxes at the walls, that is if we

assume an adiabatic condition, then we can apply the

asymptotic model proposed in Section 2 and use a ‘‘di-

latable’’ CFD kernel with prescribed pressure. In order

to illustrate this assertion, we have computed two self-

similar solutions according to the analysis:

In Computation 1, the Mach numbers at farfield are,

respectively, 2.9� 10�3 (upper side) and 8� 10�3 (lower

side) The velocities at farfield are 10.1 (upper) and 27.5

(lower). The Reynolds is 700. (with respect to hole sec-

tion).

In Computation 2, all above figures are kept except

the Mach number: 2.9� 10�2 (upper side) and 8� 10�2

(lower side).

We observe that our flows are nearly self-similar for

velocity and for pressure, see Figs. 6 and 7 for the ve-

locity and, see Figs. 8 and 9 for the pressure.

However the pressure is not uniform, according to

our asymptotic model. As a result, the density and

temperature contours have not to be similar between the

two computations, since qT is not constant. Indeed the

similarity is not good for temperature (Figs. 12 and 13)

and density (Figs. 10 and 11) between the two compu-

tations.



Fig. 6. Low Mach flow near a perforated wall: Computation 1;

contours of the modulus of velocity, from 0 to 32 m/s.

Fig. 7. Low Mach flow near a perforated wall: Computation 2;

contours of the modulus of velocity, from 0 to 32 m/s.

Fig. 8. Low Mach flow near a perforated wall: Computation 1;

contours of the pressure, from 10129000 to 10133000 Pa.

Fig. 9. Low Mach flow near a perforated wall: Computation 2;

contours of the pressure, from 97960 to 101410 Pa.

Fig. 10. Low Mach flow near a perforated wall: Computation

1; contours of density, from 1.9987 to 1.20333 kg/m3.

Fig. 11. Low Mach flow near a perforated wall: Computation

2; contours of density, from 1.16515 to 1.20482 kg/m3.
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This discrepancy in similarity is explained by the fact

that the asymptotic analysis cannot take into account an

isothermal condition.
This illustrates that the flow under analysis does not

perfectly satisfy the assumptions of the asymptotic limit,

and shows that the use of a dilatable model for the



Fig. 13. Low Mach flow near a perforated wall: Computation

2; contours of temperature, from 285.021 to 294.032 K.

Fig. 12. Low Mach flow near a perforated wall: Computation

1; contours of temperature, from 29320.2 to 29401.7 K.
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calculation would introduce a notable error. This kind

of flow perfectly justifies the use of the compressible

methods presented in this paper.

In the near future, we wish to compute a turbulent

case. The Reynolds will not be so large close to the

perforation, relaminarisation will happen and this is a

motivation for applying an unsteady LES study. Then

we need an implicit and accurate time advancing scheme

as developed in the previous section and experimented

in the next section.
7. Application to a transient convection problem

7.1. Definition of the transient problem

In many transient flows of industrial interest, the

Mach number is not so large, but the actual transient

phenomena cover the different time scales of that kind of

flow, i.e. the acoustic scale, very fast, and other scales

related to convection. Asymptotic models are by defi-

nition unable to account for the acoustic waves. In a

preliminary study of this kind of flow, we consider a

transient version of the convection box of De Vahl

Davis (previous section). It is built by specifying an

initial condition: the fluid in the square cavity is at rest

with uniform temperature equal to the (right horizontal)

cold wall. Evolution will be forced by putting suddenly
the temperature of the left vertical wall to a larger level

and maintaining it at this level (warm wall temperature).

After fast acoustic phenomena, convection settles down

and progressively gets steady, see Fig. 14. The Mach

number in this case is of the order of 10�4. In the

present study, we conserve the spatial discretization

conditions presented in Section 6.2, that is a second-

order spatial scheme, and a rather coarse mesh with

41� 41 nodes.

7.2. Adaptive time stepping

Since both time advancing schemes are a priori un-

conditionally stable, time steps as large as we want can

be used. But accuracy can be a mess. In case of scheme

BDF1, waves which are smaller than time discretization

are completely damped, with SDIRK, which is less dis-

sipative, erroneous oscillations (not necessarily of high-

est frequency) may be obtained. Then, with too large

time steps, SDIRK might produce much less good re-

sults than BDF1. This is the reason why we have con-

sidered the automatic adaptation of the time step length.

Such adaptation is not so easy due to a particular

characteristic of the flow: acoustic waves, that are quasi-

periodic, and that present amplitudes decreasing pro-

gressively of several orders of magnitude. Many classical

choices in measuring the time truncation will be faced to

the large oscillations of the signal, leading to too large

and too small time steps. For example, a sensor relying

on the maximum (in domain) of the pressure time de-

rivative:

�1ðtÞ ¼ Maxxop=ot

will produce the ‘‘thick’’ signal presented in Fig. 15.

In our study, we consider

�iðtÞ ¼ op=ot; �MoyðtÞ ¼ Ri�iðtÞ=nt;

nt being the total number of nodes. Then the actual

sensor that we propose is

DadaptðtÞ ¼ const:
nt

Rið�iðtÞ � �MoyðtÞÞ2
� �

0
@

1
A

1=2

:

The ability of this sensor in evaluating the heterogeneity

of the pressure field is much more stable, since, taking

the inverse as a time step produces a rather regular time

step as illustrated in Fig. 16. In the sequel, and for

comparison purpose, we shall also take a logarithmic

law (Fig. 16 again) giving a time step evolution close to

the adaptative time step.

7.3. Calculation of the whole transient flow

For result evaluation we concentrate on the Nusselt

output, a number indicating the rate of calories through
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Fig. 14. Unsteady convective flow: temperature contours. (a): t ¼ 0:1; (b): t ¼ 0:5; (c): t ¼ 0:9; (d): t ¼ 1:3; (e): t ¼ 1:7; (f): t ¼ 2:1.
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the cold wall. Our time advancing scheme combined

with the above time step adaptation is able to produce,

for different levels of time discretization, a set of co-

herent results presented in Fig. 17. We observe time

accuracy for smaller time steps at some part of the

Nusselt histories and not at some others: the very first

interval involves a singular spatial initialization that

does not permit third-order accuracy.

Then follows a micro-scale interval, in which the time

step is small enough for allowing a high accuracy (third-
order in time) and capturing the acoustics transients

(t between 0.0001 and 0.001).

Between t ¼ 0:005 and t ¼ 0:05, the time step in-

creases and progressively reaches the size for which it

does not permit anymore the capture of acoustics.

Acoustics are then damped by the (yet small) level of

dissipation of the time advancing scheme. If we stop the

calculation and restart it with a much smaller time step,

then acoustic waves reappear instantaneously, see Fig.

18. In the last interval (after t ¼ 0:05), our scheme shows
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again an apparent high-order of accuracy, although the

time step is too large for convergence at third-order of

the truncation error. In fact, errors related to acoustics

are of order the square of Mach number and cannot

influence much the apparent accuracy of the computa-

tion.

To sum up the outputs of this last case study, it ap-

pears that the choice of the time step length is a delicate

issue. We observe also that, as expected, the third-order
accurate implicit scheme is able to capture very fast

transients, as far as they are smooth enough, and as far

as the time step is small enough. But in that case, the

calculation is very expensive.

In cases where acoustic transient are very small, the

new scheme can produce accurate answers while dissi-

pating acoustics, as far as large enough time steps are

used. Then the scheme can sucessfully compete with

schemes of lower order.
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8. Concluding remarks

This work contributes to the adaptation of Godunov-

type numerical methods to low Mach number flows.

Focusing on the Roe flux difference splitting, we analy-
sed the impact of introducing a preconditioner proposed

by Turkel in the dissipative term of the Roe splitting.

Our first contribution is to show by a truncation analysis

that a proper behavior of the truncation error is ob-

tained with this modification not only for incompressible
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flow but also for a very large set of asymptotic low Mach

number situations, including thermical problems.

Both steady and unsteady problems are targeted and

a very popular method for solving them is to use the

first-order preconditioning also called defect-correction

method. Our second contribution is to propose a sim-

plified analysis for its behavior when applied to low

Mach number flows. Iterative convergence is mesh and

Mach number independent.

Third, in order to be able to compute accurately

unsteady flows, we propose a third-order accurate im-

plicit time advancing enjoying unconditional stability

properties. These advances are validated by a set of

demonstrative computations.

We showed first that the resulting approximation is

able, for an incompressible classical flow case, to provide

results with second-order accuracy, and in particular to

provide an accuracy as good (for the same number of

nodes) as the one obtained by analogous computations

performed with the incompressible model and a stan-

dard numerical method.

A second case is used for illustrating the performance

of the defect-correction iteration. We have described an

industrial flow that cannot be computed with asymptotic

models (incompressible or dilatable assumptions) but

can be well computed with the proposed scheme.

We have proposed an ‘‘all time scales’’ time ad-

vancing method of high accuracy, and demonstrated its

interest on a complex transient flow involving large and

small time scales, with large and small amplitudes.

Further efficiency improvement can be obtained by

improving the linear solver for the first-order Jacobian

system. Studying it was not in the scope of our study and

we refer for example to the fast multi-grid solver de-

veloped by Van Leer and co-workers [18].

Also spatial errors can be made smaller by using an

upwind stabilisation of even high-order (see for example

in [4]).

Concerning the implicit time advancing, some saving

may be obtained by replacing the Norsett nonlinear

scheme by the linear Rosenbrook one. We have not yet

explored this option because we have anyway an inner

defect-correction loop which may render the Rosen-

brook option not more efficient. The question remains

open. Also the issue of computing unsteady flows with

fast and slow transients remains a difficult open question

that we shall continue to investigate by considering 3D

large eddy simulation of low Mach flows.
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